2019-05-06 14:38:07來源:新浪
今天,為大家整理了三角形四邊形以及圓的性質(zhì)定理~~
01
三角形中常見輔助線的添加
1. 與角平分線有關的
(1) 可向兩邊作垂線。
(2)可作平行線,構造等腰三角形
(3)在角的兩邊截取相等的線段,構造全等三角形
2. 與線段長度相關的
(1)截長:證明某兩條線段的和或差等于第三條線段時,經(jīng)常在較長的線段上截取一段,使得它和其中的一條相等,再利用全等或相似證明余下的等于另一條線段即可
(2)補短:證明某兩條線段的和或差等于第三條線段時,也可以在較短的線段上延長一段,使得延長的部分等于另外一條較短的線段,再利用全等或相似證明延長后的線段等于那一條長線段即可
(3)倍長中線:題目中如果出現(xiàn)了三角形的中線,方法是將中線延長一倍,再將端點連結(jié),便可得到全等三角形。
(4)遇到中點,考慮中位線或等腰等邊中的三線合一。
3. 與等腰等邊三角形相關的
(1)考慮三線合一
(2)旋轉(zhuǎn)一定的度數(shù),構造全都三角形,等腰一般旋轉(zhuǎn)頂角的度數(shù),等邊旋轉(zhuǎn)60 °
02
四邊形中常見輔助線的添加
特殊四邊形主要包括平行四邊形、矩形、菱形、正方形和梯形。在解決一些和四邊形有關的問題時往往需要添加輔助線。下面介紹一些輔助線的添加方法。
1. 和平行四邊形有關的輔助線作法
平行四邊形是較常見的特殊四邊形之一,它有許多可以利用性質(zhì),為了利用這些性質(zhì)往往需要添加輔助線構造平行四邊形。
(1) 利用一組對邊平行且相等構造平行四邊形
(2)利用兩組對邊平行構造平行四邊形
(3)利用對角線互相平分構造平行四邊形
2. 與矩形有輔助線作法
(1)計算型題,一般通過作輔助線構造直角三角形借助勾股定理解決問題。
(2)證明或探索題,一般連結(jié)矩形的對角線借助對角線相等這一性質(zhì)解決問題。和矩形有關的試題的輔助線的作法較少。
3. 和菱形有關的輔助線的作法
和菱形有關的輔助線的作法主要是連接菱形的對角線,借助菱形的判定定理或性質(zhì)定定理解決問題。
(1)作菱形的高
(2)連結(jié)菱形的對角線
4. 與正方形有關輔助線的作法
正方形是一種完美的幾何圖形,它既是軸對稱圖形,又是中心對稱圖形,有關正方形的試題較多。解決正方形的問題有時需要作輔助線,作正方形對角線是解決正方形問題的常用輔助線。
5. 與梯形有關的輔助線的作法
和梯形有關的輔助線的作法是較多的.主要涉及以下幾種類型:
(1)作一腰的平行線構造平行四邊形和特殊三角形
(2)作梯形的高,構造矩形和直角三角形
(3)作一對角線的平行線,構造直角三角形和平行四邊形
(4)延長兩腰構成三角形
(5)作兩腰的平行線等
03
圓中常見輔助線的添加
1. 遇到弦時(解決有關弦的問題時)
常常添加弦心距,或者作垂直于弦的半徑(或直徑)或再連結(jié)過弦的端點的半徑。
作用:
① 利用垂徑定理
② 利用圓心角及其所對的弧、弦和弦心距之間的關系
③ 利用弦的一半、弦心距和半徑組成直角三角形,根據(jù)勾股定理求有關量
2. 遇到有直徑時
常常添加(畫)直徑所對的圓周角
作用:利用圓周角的性質(zhì)得到直角或直角三角形
3. 遇到90度的圓周角時
常常連結(jié)兩條弦沒有公共點的另一端點
作用:利用圓周角的性質(zhì),可得到直徑
4. 遇到弦時
常常連結(jié)圓心和弦的兩個端點,構成等腰三角形,還可連結(jié)圓周上一點和弦的兩個端點
作用:
①可得等腰三角形
②據(jù)圓周角的性質(zhì)可得相等的圓周角
5. 遇到有切線時
常常添加過切點的半徑(連結(jié)圓心和切點)
作用:利用切線的性質(zhì)定理可得OA⊥AB,得到直角或直角三角形
常常添加連結(jié)圓上一點和切點
作用:可構成弦切角,從而利用弦切角定理。
6. 遇到證明某一直線是圓的切線時
(1) 若直線和圓的公共點還未確定,則常過圓心作直線的垂線段。
作用:若OA=r,則l為切線
(2) 若直線過圓上的某一點,則連結(jié)這點和圓心(即作半徑)
作用:只需證OA⊥l,則l為切線
(3) 有遇到圓上或圓外一點作圓的切線
7. 遇到兩相交切線時(切線長)
常常連結(jié)切點和圓心、連結(jié)圓心和圓外的一點、連結(jié)兩切點
作用:據(jù)切線長及其它性質(zhì),可得到
① 角、線段的等量關系
② 垂直關系
③ 全等、相似三角形
8. 遇到三角形的內(nèi)切圓時
連結(jié)內(nèi)心到各三角形頂點,或過內(nèi)心作三角形各邊的垂線段
作用:利用內(nèi)心的性質(zhì),可得
① 內(nèi)心到三角形三個頂點的連線是三角形的角平分線
② 內(nèi)心到三角形三條邊的距離相等
9. 遇到三角形的外接圓時
連結(jié)外心和各頂點
作用:外心到三角形各頂點的距離相等
10. 遇到兩圓外離時
(解決有關兩圓的外、內(nèi)公切線的問題)常常作出過切點的半徑、連心線、平移公切線,或平移連心線
作用:
①利用切線的性質(zhì);
②利用解直角三角形的有關知識
11. 遇到兩圓相交時
常常作公共弦、兩圓連心線、連結(jié)交點和圓心等
作用:
①利用連心線的性質(zhì)、解直角三角形有關知識
② 利用圓內(nèi)接四邊形的性質(zhì)
③ 利用兩圓公共的圓周的性質(zhì)
④ 垂徑定理
12. 遇到兩圓相切時
常常作連心線、公切線
作用:
①利用連心線性質(zhì)
②切線性質(zhì)等
13. 遇到三個圓兩兩外切時
常常作每兩個圓的連心線
作用:可利用連心線性質(zhì)
14. 遇到四邊形對角互補或兩個三角形同底并在底的同向且有相等“頂角”時
常常添加輔助圓
作用:以便利用圓的性質(zhì)
一級建造師 二級建造師 消防工程師 消防設施操作員 BIM 造價工程師 環(huán)評師 監(jiān)理工程師 咨詢工程師 安全工程師 建筑九大員 公路水運檢測 通信工程 智慧消防工程師 裝配工程師 一級注冊建筑師 二級注冊建筑師 注冊電氣工程師 智慧建造工程師 房地產(chǎn)估價師 應急救援員 EPC工程總承包 PLC智能制造 碳排放管理師 雅思 托福 GRE 托業(yè) SAT GMAT A-Level ACT AP課程 OSSD 多鄰國英語 考研英語 英語四六級 商務英語 青少兒英語 IB英語 劍橋英語 職場英語 提升英語 AEAS 英語口語 出國英語 初高中英語 學生英語 成人英語 公共英語 詞庫 經(jīng)濟師 初級會計師 中級會計師 注冊會計師 基金從業(yè) 證券從業(yè) 薪稅師 銀行從業(yè) CMA ACCA 會計實訓 稅務師 CFA 企業(yè)合規(guī)師 審計師 FRM 高級會計師 會計就業(yè) 期貨從業(yè) CQF 真賬實操技能 葡萄牙語 日語 德語 法語 韓語 西班牙 意大利 高考小語種 粵語 泰語 俄語 阿拉伯語 優(yōu)路 火星時代 環(huán)球雅思 櫻花日語 啟德雅思 新通 達內(nèi) 高頓 童程童美 樂博樂博 小碼王 秦漢胡同 新航道 秦學教育 學大教育 東方瑞通